Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells.

نویسندگان

  • J Witowski
  • J Wisniewska
  • K Korybalska
  • T O Bender
  • A Breborowicz
  • G M Gahl
  • U Frei
  • J Passlick-Deetjen
  • A Jörres
چکیده

Bioincompatibility of peritoneal dialysis fluids (PDF) has been linked to the presence of glucose degradation products (GDP). Previous experiments have shown that short-term exposure to several GDP at concentrations found in commercially available PDF had no significant effect on human peritoneal mesothelial cells (HPMC). During continuous ambulatory peritoneal dialysis, however, cells are continually exposed to GDP for extended periods of time. Thus, the impact of GDP on HPMC during long-term exposure was assessed. HPMC were cultured for up to 36 d in the presence of 6 identified GDP (acetaldehyde, formaldehyde, furaldehyde, glyoxal, methylglyoxal, and 5-HMF) at doses that reflect their concentrations in conventional PDF. At regular time intervals, the ability of HPMC to secrete cytokines (interleukin-6 [IL-6]) and extracellular matrix molecules (fibronectin) was evaluated. In addition, cell viability, morphology, and proliferative potential were assessed. Exposure to GDP resulted in a significant reduction in mesothelial IL-6 and fibronectin release. Approximately 80% of this decrease occurred during the first 12 d of the exposure and was paralleled by a gradual loss of cell viability and development of morphologic alterations. After 36 d of exposure, the number of cells in GDP-treated cultures was reduced by nearly 60%. However, GDP-treated cells were able to resume normal proliferation when transferred to a normal GDP-free medium. HPMC viability and function may be impaired during long-term exposure to clinically relevant concentrations of GDP, which suggests a potential role of GDP in the pathogenesis of peritoneal membrane dysfunction during chronic peritoneal dialysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the glyoxalase pathway in reducing mesothelial toxicity of glucose degradation products.

BACKGROUND The glucose degradation products (GDP) presentin conventional peritoneal dialysis fluids (PDF) may exert adverse effects toward human peritoneal mesothelial cells (HPMC). Some GDP can be detoxified by the glyoxalase/ glutathione pathway. It has been shown that the addition of glyoxalase I (GLO-I) and reduced glutathione (GSH) to PDF effectively eliminates GDP. We have therefore exami...

متن کامل

3,4-Dideoxyglucosone-3-ene as a mediator of peritoneal demesothelization.

BACKGROUND The mesothelium contributes significantly to the functional, structural and homeostatic properties of the peritoneum. Bioincompatible peritoneal dialysis solutions contribute to mesothelial cell loss during chronic peritoneal dialysis. Cell death has been implicated in mesothelial cell loss, but the molecular mechanisms have not been adequately characterized. We now report the modula...

متن کامل

Effect of glucose degradation products on human peritoneal mesothelial cell function.

Bioincompatibility of conventional glucose-based peritoneal dialysis fluids (PDF) has been partially attributed to the presence of glucose degradation products (GDP) generated during heat sterilization of PDF. Most previous studies on GDP toxicity were performed on animal and/or transformed cell lines, and the impact of GDP on peritoneal cells remains obscure. The short-term effects of six iden...

متن کامل

Viability of, and basic fibroblast growth factor secretion by, human peritoneal mesothelial cells cultured with various components of peritoneal dialysis fluid.

In patients on long-term continuous ambulatory peritoneal dialysis (CAPD), peritoneal dysfunction is considered to be due to the loss of peritoneal mesothelial cells and to subsequent peritoneal fibrosis and neovascularization. Our aim in the present study was to clarify the role of various components of peritoneal dialysis fluid in the occurrence of peritoneal dysfunction in CAPD patients. We ...

متن کامل

Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid.

BACKGROUND Conventional peritoneal dialysis fluids (PDFs) have been shown to damage the mesothelial layer and are associated with the development of peritoneal fibrosis and neoangiogenesis. New-generation PDFs have therefore been developed with physiological pH and reduced levels of glucose degradation products (GDPs), precursors of advanced glycation end products (AGEs). In this work, we evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2001